
Available online at www.sciencedirect.com

ARTICLE IN PRESS
www.elsevier.com/locate/actamat

Acta Materialia xxx (2008) xxx–xxx
Void growth in metals: Atomistic calculations
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Abstract

Molecular dynamics simulations in monocrystalline and bicrystalline copper were carried out with LAMMPS (Large-scale Atomic/
Molecular Massively Parallel Simulator) to reveal void growth mechanisms. The specimens were subjected to tensile uniaxial strains;
the results confirm that the emission of (shear) loops is the primary mechanism of void growth. It is observed that many of these shear
loops develop along two slip planes (and not one, as previously thought), in a heretofore unidentified mechanism of cooperative growth.
The emission of dislocations from voids is the first stage, and their reaction and interaction is the second stage. These loops, forming ini-
tially on different {111} planes, join at the intersection, if the Burgers vector of the dislocations is parallel to the intersection of two {111}
planes: a h110i direction. Thus, the two dislocations cancel at the intersection and a biplanar shear loop is formed. The expansion of the
loops and their cross slip leads to the severely work-hardened region surrounding a growing void. Calculations were carried out on voids
with different sizes, and a size dependence of the stress threshold to emit dislocations was obtained by MD, in disagreement with the Gur-
son model which is scale independent. This disagreement is most marked for the nanometer sized voids. The scale dependence of the stress
required to grow voids is interpreted in terms of the decreasing availability of optimally oriented shear planes and increased stress required
to nucleate shear loops as the void size is reduced. The growth of voids simulated by MD is compared with the Cocks–Ashby constitutive
model and significant agreement is found. The density of geometrically necessary dislocations as a function of void size is calculated based
on the emission of shear loops and their outward propagation. Calculations are also carried out for a void at the interface between two
grains to simulate polycrystalline response. The dislocation emission pattern is qualitatively similar to microscope observations.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Fracture of ductile metals occurs by nucleation, growth
and coalescence of voids [1]. There have been a number of
continuum models proposed for the growth of voids in
both two and three dimensions [2–5]. However, until
recently there was no well established atomistic mechanism
for void growth, and the model proposed by Cuitiño and
Ortiz [6] is based on vacancy pipe diffusion. The only
exception is Stevens et al. [7], who proposed a dislocation
model for void growth in spalling.
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Lubarda et al. [8] demonstrated that the vacancy diffu-
sion mechanism is only applicable at low strain rates and/
or high temperatures, and is therefore only relevant in creep
deformation. Indeed, failure in creep is preceded by void
nucleation and growth at the grain boundaries, and has
been successfully modeled using the diffusion equation by
Raj and Ashby [9]. Under these conditions vacancies defi-
nitely play a key role. The strain rates encountered in con-
ventional deformation are on the order of 10�3 s�1; in
laser shock the strain rates are on the order of 106 s�1 and
higher. Hence, one cannot envisage a vacancy diffusion
mechanism under most operating conditions.

Analytical results by Lubarda et al. [8] and molecular
dynamics simulations by Rudd and co-workers [10–13]
rights reserved.
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and Marian et al. [14,15] indicate that dislocation emission
from the growing voids is the primary mechanism of radial
material transfer required for void expansion. Void col-
lapse calculations [16,17] lead to similar (but opposite in
sign) dislocation configurations. Both prismatic and shear
loops were postulated [8] and observed in molecular
dynamics (MD) simulations [10–15,18]. Potirniche et al.
[19] studied the expansion of voids with radii varying
between 0.75 and 4.5 nm in monocrystalline nickel using
a modified embedded atom method. Fig. 1 shows the two
types of dislocation loops. It should be noted that Ashby
[20–22] had also postulated prismatic and shear loops in
the deformation of metals containing rigid particles to
accommodate the strain gradients imposed; these are the
‘‘geometrically necessary dislocations”. Seitz [23] and
Brown [24] postulated prismatic loops forming at the inter-
face between rigid article and the matrix. Thus, the sugges-
tion that void growth takes place by shear and prismatic
loop expansion is well rooted in inhomogeneous plastic
deformation. It is the objective of this report to analyze
the growth of voids in greater detail. The grain-boundary
nature and void size were altered to examine their effect
on growth mechanisms.
Fig. 1. Dislocation loops postulated by Lubarda et al. [8]; direction of
dislocation motion marked by arrows. (a) Prismatic loops and (b) shear
loops.
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Atomistic simulation performed by Horstemeyer et al.
[25] in simple shear using between 102 and 108 atoms
revealed significant differences in the flow stress when
expressed as a function of a scale parameter (volume/sur-
face of sample). The resolved shear stress for plastic flow
increases significantly with the decrease in size-scale, con-
firming experimental measurements related to gradient
plasticity effects (e.g., Fleck et al. [33,34]). Interestingly,
the MD results indicate that dislocation nucleation effects
and not strain gradient effects (calculations in simple shear
do not produce strain gradients) are responsible for the sig-
nificant differences in shear flow stress obtained with the
change in dimensional scale. These results have a
significant bearing in what is perceived to be gradient
plasticity.

2. Experimental observation

Dislocation activity around a void growing in the spall
regime of shock compressed copper was reported by Meyers
and Aimone [26] and Christy et al. [27]. There are also
reports in the literature of a work-hardened layer surround-
ing a growing void (e.g. Ahn et al. [18]). Fig. 2 shows slip
bands emanating from voids that nucleated at grain bound-
aries in copper. It is clear that void expansion did not occur
by vacancy migration or prismatic loop emission, since slip
bands, emanating from the void surface, are clearly seen.
However, the exact nature of dislocation generation and
evolution cannot be obtained from these observations. This
requires detailed analysis methods such as MD.

3. Computational approach

The molecular dynamics LAMMPS (Large-scale
Atomic/Molecular Massively Parallel Simulator) [28] code
was used in this investigation. For the face-centered cubic
copper structure, an EAM [29] Mishin et al. [30] potential
was used. The number of atoms was varied from 105 to 107,
and calculations were performed on parallel PCs and on
the supercomputer at San Diego super computer center.

The single crystal copper domain was 10� 10� 10 nm
with 1 nm radius spherical void at center. This gives a void
volume fraction of 0.42%. A periodic boundary was used
with uniaxial expansion strain. The domain size was
reduced for 0.5 nm radius void and enlarged for 2.0 nm
radius void while fixing void volume fraction at 0.42%.
The different sized domains were subjected to uniaxial
strain along [001]. All simulations were done at a strain
rate of 108 s�1 (2000 ps, 20% volume strain). Visualization
of stacking faults representing dislocations was done with a
filter using a centrosymmetry parameter [31].

A bicrystal copper domain was constructed with two
single crystal cubes sharing a tilt boundary making an
angle, h ¼ 43:6�. The random angle of 43.6� between two
grains (1, left and 2, right) was chosen because it rotates
the atoms into positions that produce simple indices in
LAMMPS. A counterclockwise rotation around [100] of
rowth in metals: Atomistic calculations, Acta Mater (2008),



Fig. 2. Evidence of slip around growing grain-boundary voids: (a) Small
voids and (b) large void.
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Fig. 3. Stress–strain relations for different void sizes, showing size-scale
dependence of yield stress.
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21.8� for grain 1 and of 21.8� (clockwise) for grain 2 were
taken. This rotation transformed the directions [01 0] and
[001] from the original referential into ones with reason-
ably small indices: ½05�2� and [025] for grain 1 and [052]
and ½0�25� for grain 2, respectively. The domain underwent
annealing and relaxation to minimize grain-boundary
energy; a spherical void was cut followed by a second relax-
ation to minimize void surface energy. Uniaxial volume
strain was applied at a strain rate of 5� 109 s�1; the void
radius was 18 nm.

4. Results

4.1. Void size dependence of critical stress

A size-scale dependence of yield stress can be observed
in uniaxial strain simulations with various sizes of domains
(Fig. 3). The void fraction was kept constant at 0.42%. As
the void size increases, the yield stress drops: it is 11 GPa
Please cite this article in press as: Traiviratana S et al., Void g
doi:10.1016/j.actamat.2008.03.047
for 0.5 nm and 7 GPa for 2 nm void. It should be men-
tioned that Potirniche et al. [19] have made similar calcula-
tions for nickel. Their void radius was varied from 0.75 to
4.5 nm whereas in the current calculations they were varied
from 0.5 to 2 nm. Potirniche et al. [19] used a constant ratio
of specimen to void dimensions. Other differences with the
current calculations are the lateral boundary conditions;
the boundaries were assumed free by Potirniche et al. [19]
whereas the state was assumed to be uniaxial strain with
periodic boundary conditions. There is also a significant
difference in strain rate: Potirniche et al. [19] used
1010 s�1, whereas we used 108 s�1. This lower strain rate
enabled individual observation of dislocations. In spite of
the differences, the stresses calculated herein are in good
agreement with the ones by Potirniche et al. [19] for nickel;
the ratios of stress to shear modulus vary from 0.12 to 0.22
in our calculations and from 0.17 to 0.26 in Fig. 8 of Pot-
irniche et al. [19].

The void size dependence is in opposition to the Gurson
criterion [2], which is size independent: ry ¼ gðf ; rkk; reÞ.
The stress at which the quasi-linear behavior is no longer
obeyed is taken as the yield stress; it corresponds to the
onset of dislocation activity. The stress drop is substantial
for the smallest void radius (0.5 nm); this is due to the fact
that domain size is the smallest. For the larger voids, a
greater extent of dislocation interaction takes place before
the dislocations reach the boundaries of the ‘‘box”. It is
interesting that these results can also be interpreted in the
framework of gradient plasticity [32–38]. However, this
transcends the goal of this report.

Fig. 4a shows the yield stress (normalized to the shear
modulus, G) plotted as a function of the normalized void
radius, R=b, where b is the Burgers vector. The decrease
of yield stress with increasing R=b is clear, similar to Dávila
et al. [16]. The von Mises stress was obtained from the three
components of the principal stress in the uniaxial strain
state. The atomistic results compare well with the analyti-
cal calculations by Lubarda et al. [8], which are obtained
from
rowth in metals: Atomistic calculations, Acta Mater (2008),
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where the radius of the core, Rcore, was made equal to b, 2b
and 4b. The stresses calculated by Lubarda et al. [8] are lo-
cal values at the surface of the void, whereas the current
values are from the far field, and therefore a correction fac-
tor of 2 (stress concentration for the spherical void) was
introduced.

By contrast, Gurson’s formulation [2] is void size inde-
pendent, since only the porosity, f, enters the expression:

U ¼ r2
e

r2
y

þ 2f cosh
rh

2ry

� �
� 1� f 2 ð2Þ

where ry is the uniaxial yield stress of the material, re is the
equivalent von Mises stress and rh is the hydrostatic stress.
The latter two are

re ¼
3

2
r0ijr

0
ij

� �1
2

ð3Þ

rh ¼ rkk ð4Þ
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The condition for plastic flow is

U ¼ 0 ð5Þ
The decomposition of strain into hydrostatic and deviator-
ic parts is
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The corresponding stresses are

r ¼ rhydrostatic þ rdeviatoric

¼ K

1
3
ex 0 0

0 1
3
ex 0

0 0 1
3
ex

2
4

3
5þ 2G

2
3
ex 0 0

0 � 1
3
ex 0

0 0 � 1
3
ex

2
4

3
5 ð7Þ

where K is bulk modulus and G is shear modulus. From
Eq. 4

rh ¼ Kex ð8Þ
with deviatoric stress from Eqs. 3 and 7

r2
e ¼ 4G2e2

x ð9Þ
The Gurson yield function now becomes

U ¼ 4G2e2
x

r2
y

þ 2f cosh
Kex

2ry

� �
� 1� f 2 ð10Þ

We can assume, to a first approximation, that strain rate
imparted to the material ð108 s�1Þ is such that the theoret-
ical shear stress is reached. Thus

s ¼ ry

2
’ G

10
ð11Þ

G is 48.7 GPa, K is 130 GPa and ry is 9.74 GPa. With
f ¼ 0:0042, one obtains ex ¼ 0:099484, which results in a
von Mises stress of 9.6897 GPa and a mean stress of
4.311 GPa. These values are introduced into Fig. 4a for
comparison purposes. It can be seen that the Gurson model
[2] is in reasonable agreement with the analytical Lubarda
et al. [8] results and the MD calculations for larger void
sizes. However, it does not have a void size dependence.
Wen et al. [39] modified Gurson’s model by incorporating
the Taylor dislocation model. With the introduction of this
scale dependent hardening component, the stress required
to expand voids became scale dependent. This corresponds
to the incorporation of gradient plasticity [32–38] into Gur-
son’s model.

It is instructive to establish whether the void size depen-
dence of the flow stress is directly linked to the stress
required to bow dislocation loops into semi-circles (the
stress minimum). Thus, the expression, e.g. [40], was used

r
G
¼ a

b
R

ð12Þ

where a is a parameter equal to approximately 0.5 and R

was taken as the void radius (assuming that loop and void
rowth in metals: Atomistic calculations, Acta Mater (2008),
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radii are the same, to a first approximation). The results are
plotted in Fig. 4b. In the log–log scale, both stresses ob-
tained from atomistic simulations are linear and have
expressions

rm

G ¼ 0:2884 b
R

� �0:3323

re

G ¼ 0:1288 b
R

� �0:3798
ð13Þ

The exponents and pre-exponential factors in the atomistic
calculation are 0.33–0.38 and 0.13–0.29, in contrast with
Eq. (12), in which they are 1 and 0.5, respectively. Never-
theless, the compatibility of the results is strong evidence
that loop expansion beyond a semi-circle is an important
contributing mechanism.

4.2. Two-dimensional dislocation reactions

For the shear loops postulated by Lubarda et al. [8] to
undergo continued expansion, they have to intersect if they
form in the same (111). Six loops with edge dislocations at
the center create the uniform expansion of the void seg-
ment (calota) if they can expand uniformly. In this section
the energetics of the process are analyzed. Fig. 5 shows
three dislocations (½0�11�; ½�10 1� and ½�110�) in the (111)
plane that intersects the void at 45�. These are the planes
(shown in Fig. 1b) that maximize the shear stress. Three
nascent loops are shown in Fig. 5a; as they expand
Fig. 5. In-plane dislocation interactions: (a) before interaction; (b) onset of int
leaving dislocation segments behind.
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(Fig. 5b), their extremities touch and this would encourage
a reaction. We analyze this for perfect and partial disloca-
tions in Sections 4.2.1 and 4.2.2, respectively.

4.2.1. Perfect in-plane dislocation loops

Fig. 5b shows three dislocation loops with Burgers vec-
tors ~b1;~b2 and ~b3. The resulting reaction will lead to
(Fig. 5c):

~b1 þ~b2 ¼~b7 ð14Þ
The Burgers vector of~b7 is (the Burgers vectors have to be
subtracted in order to account for the dislocation lines; this
is analogous to the interaction in a Frank–Read source):

a
2
½�101� þ ð�Þ a

2
½�110� ¼ a

2
½0�11� ð15Þ

The simple energy reduction criterion is obeyed E ¼ G b2

2

	 

and the reaction takes place

G
a2

2
þ G

a2

2
> G

a2

2
ð16Þ

Additionally, there is a change in overall dislocation length
when reaction occurs as shown in Fig. 5c. One can estimate
the equilibrium of the dislocation configuration by using
the energy equation incorporating the lengths.

Thus, the configuration seen in Fig. 5d can be envisaged:
six dislocation loops expanding uniformly in the same
eraction; (c) interactions and reaction and (d) uniform expansion of loops

rowth in metals: Atomistic calculations, Acta Mater (2008),



Fig. 6. In-plane partial dislocation interaction.
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(111) plane, creating six segments through reactions. These
segments are not mobile but are not sessile, since they have
Burgers vectors in (11 1). They have edge character, with
the Burgers vector perpendicular to the line. This configu-
ration is slightly different from the one described by Mar-
ian et al. [14,15].
Fig. 7. Initiation of plastic flow at void surface (at 590 ps): (a) rendered atom
surface at 45�; (c) rendered atoms from (a), rotated to show two loops and (d

Please cite this article in press as: Traiviratana S et al., Void g
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4.2.2. Partial in-plane dislocation loops

The partial dislocations corresponding to ~b1 in plane
(11 1) are (Fig. 6)

~b1 ¼
a
2
½�101� ) ~bp1 ¼

a
6
½�1�12�; ~bp2 ¼

a
6
½�211� ð17Þ

The partial dislocations corresponding to~b2 in plane (111)
are

~b2 ¼
a
2
½�110� )~bp3 ¼

a
6
½�12�1�; ~bp4 ¼

a
6
½�211� ð18Þ

The leading partials react as (again, we have to subtract~bp3

from ~bp1 to account for dislocation line direction
normalization)

~bp1 þ~bp3 ¼
a
6
½�1�12� þ ð�Þ a

6
½�12�1� ¼ a

2
½0�11� ð19Þ

The trailing reaction produces

~bp2 þ~bp4 ¼
a
6
½�211� þ ð�Þ a

6
½�211� ¼ 0 ð20Þ

This is the same solution as for perfect dislocations, as ex-
pected. It is interesting to note that the leading partials re-
act, creating a perfect dislocation and the trailing partials
cancel.
s from MD; (b) diagram of ð1�1�1Þ and ð�1�1�1Þ slip planes intersecting sphere
) diagram showing leading partial dislocations.

rowth in metals: Atomistic calculations, Acta Mater (2008),
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4.3. Atomistic simulation of dislocation activity

Figs. 7 and 8 shows both the MD simulations (left) and
models (right) for initiation and propagation of disloca-
tions. Shear loops on different {11 1} planes, making 45�
with the void, connect at the h110i intersection (Fig. 7b).
Fig. 7a and c shows two views of a biplanar dislocation
loop starting to form. This is more clear in the schematic
of Fig. 7d, which shows the leading partials fully formed.
As the leading partials expand, the trailing partials follow
them. More complex dislocation interactions take place
as the shear loops propagate outwards (Fig. 9).

In general, the stacking fault consists of two layers of
atoms composing the plane of the dislocation. Fig. 8 shows
the continued expansion of the biplanar loops. When an
additional layer forms on top of these two layers, the plane
opens up with trailing edge of dislocation closing the stack-
ing fault. At this point, it becomes a shear loop with a nar-
row stacking fault band. Shear loops continue to travel
outwards from the void surface as they transport material,
accommodating the growth of void.

Bicrystal simulation, although done at much higher
strain rate ð5� 109 s�1Þ shows results consistent with single
crystal void growth. Partial dislocation loops are emitted
from the void surface, interact and travel together as the
strain increases (Fig. 10). One can see at least two biplanar
shear loops emanating from the void in Fig. 10 (marked
Fig. 8. Continued loop expansion: (a) rendered atoms from MD (591 ps); (b) c
(d) corresponding sketched diagram.
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1 and 2), one in each grain. The dislocation interactions
are more complex because the number of slip planes involved
is twice as high. Figs. 11 and 12 show the two-dimensional
sections perpendicular to the grain-boundary (left) and
three-dimensional views (right) at different times (40–
45 ps). The evolution of shear is evident, and the similarity
with the experimental observations of Fig. 2 is striking. Slip
emanates from the void starting in Fig. 11c and propagates
outward along h111i; shear loops are activated in the two
grains shown in Fig. 12a–c. In Fig. 12c, one can see that the
trailing partial follows the leading partial. This can be seen
better in the tridimensional views shown in Fig. 12d and f.

The separation of partials in MD calculations has been
the object of considerable study, and the potential used
influences these values. Van Swygenhoven et al. [41] discuss
this for nanocrystalline metals and point out the impor-
tance of two stacking-fault energies (SFEs): the stable
and the unstable one. The generalized planar fault energy
curve provides the barrier that the leading and trailing par-
tial dislocations encounter. This barrier has two cusps with
a trough between them. The first cusp corresponds to the
unsteady SFE and the second cusp to the steady SFE.
Van Swygenhoven et al. [41] warn the readers of the limita-
tions of the MD analysis, where both the high stresses and
short timescales can affect the separation between partials.
Table 1 shows the stable and unstable SFEs for different
potentials used. There is some variation. The nucleation
orresponding sketched diagram; (c) rendered atoms from MD (595 ps) and

rowth in metals: Atomistic calculations, Acta Mater (2008),



Fig. 9. Later growth and interaction of shear loops emanating from void: (a) 597 ps; (b) 598 ps and (c) 599 ps.

Fig. 10. Shear loops and their interaction in bicrystal simulation with
initial void at grain-boundary (uniaxial strain).
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of the trailing dislocation encounters the energetic barrier
ðcUSF � cSFÞ. Hence, we are aware of the limitations of
MD in predicting the actual partial separation. Neverthe-
less, we observe both partials and perfect dislocations
and the minimum partial separation observed (Fig. 10) is
(3–5)b. However, the stacking fault can be considerably lar-
ger prior to the nucleation of the trailing partial.

The simulations were carried out under uniaxial strain,
not uniaxial stress, as in Potirniche et al. [19]. The lateral
stresses have been computed as a function of time and
are shown in Fig. 13. The difference between the longitudi-
nal ðSzzÞ and lateral stresses (Sxx and Syy) rises linearly until
the maximum. At this point, the longitudinal stress
decreases as a result of dislocation loop nucleation at the
surface of void. There is a modest rise in the transverse
stresses. As a result, the three stresses approach each other
and the state of stress approaches a hydrostat. As the three
stresses decay on unloading, their magnitudes are very
close. Hence, the emission of dislocations at the void sur-
faces relaxes the deviatoric stresses.

4.4. Analysis of biplanar shear loops

A more detailed dislocation representation is shown in
Fig. 14a and b (perfect dislocations and partial disloca-
rowth in metals: Atomistic calculations, Acta Mater (2008),



Fig. 11. Sequence of loop nucleation and growth in bicrystal simulation
(times: 40–43 ps).

Fig. 12. Sequence of loop nucleation and growth in bicrystal simulation
(times: 44–45 ps).

Table 1
Table of different potentials used for copper

Potential Reference cSFðmJ=m2Þ cUSFðmJ=m2Þ
Cleri–Rosato [42] 20.6 154.1
Schiøtz–Jacobsen [43] 33.5 173.1
Mishin et al. 1 [30] 44.4 158
Mishin et al. 2 [30] 36.2 161
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tions, respectively). In Fig. 14a, two perfect dislocation
loops,~b1 and~b2, forming on ð1�1�1Þ and ð�1�1�1Þ, respectively,
interact from the early state of dislocation formation. They
have parallel Burgers vectors but are on different planes.
The intersection line is also aligned with ½0�11�, which
allows the two dislocations to glide without forming sessile
segments. Actually, they cancel each other at the h110i
intersection. An analysis analogous to the one made in Sec-
tions 4.2.1 and 4.2.2 was carried out with the difference that
we now use ð1�1�1Þ and ð�1�1�1Þ.

4.4.1. Perfect dislocation biplanar interaction

~b1 þ~b2 ¼~b7 ð21Þ
a
2
½0�1 1� þ ð�Þ a

2
½0�11� ¼ 0 ð22Þ

The energy becomes zero at the intersection line, because
the two perfect dislocations cancel each other. Thus, the
Please cite this article in press as: Traiviratana S et al., Void g
doi:10.1016/j.actamat.2008.03.047
biplanar loop does not require the creation of a radial dis-
location. This is an energetic advantage over the planar
loop emission mechanism.

4.4.2. Partial dislocation biplanar interaction

The interaction of perfect dislocations can be extended
to partial dislocations (Fig. 14b). The decomposition of a
perfect dislocation ~b1 in ð1�1�1Þ leads to
rowth in metals: Atomistic calculations, Acta Mater (2008),
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Fig. 14. Top view of loop interaction of biplanar dislocation loops on
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~b1 ¼
a
2
½0�1 1� )~bp1 ¼

a
6
½�1�21�; ~bp2 ¼

a
6
½1�12� ð23Þ

The energy criterion is ð/ b2Þ
a2

2
>

a2

6
þ a2

6
¼ a2

3
ð24Þ

The decomposition of a perfect dislocation ~b2 in ð�1�1�1Þ is
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~b2 ¼
a
2
½0�11� )~bp3 ¼

a
6
½�1�12�; ~bp4 ¼

a
6
½1�21� ð25Þ

The energy criterion is ð/ b2Þ
a2

2
>

a2

6
þ a2

6
¼ a2

3
ð26Þ

The reaction between the leading partials is (note the sign
change required for normalization of the dislocation line
direction)

~bp1 þ~bp3 :
a
6
½�1�21� þ ð�Þ a

6
½�1�12� ¼ a

6
½0�1�1� ð27Þ

The energy criterion is ð/ b2Þ
a2

6
þ a2

6
¼ a2

3
>

a2

18
ð28Þ

This reaction reduces energy. For the trailing partials

~bp2 þ~bp4 :
a
6
½1�12� þ ð�Þ a

6
½1�21� ¼ a

6
½011� ð29Þ

The energy criterion is ð/ b2Þ
a2

6
þ a2

6
¼ a2

3
>

a2

18
ð30Þ

This reaction also reduces energy. The sum of the two reac-
tion products is, as expected, zero. This is consistent with
the calculations conducted on biplanar perfect dislocations.
Thus the leading partials create a Lomer–Cottrell sessile
dislocation a

6
½0�1�1�; the trailing partials react similarly and

create another Lomer–Cottrell sessile dislocation a
6
½01 1�,

which cancels the one created by the leading partials. This
sessile dislocation constricts the loop at the slip-plane inter-
section. Hence, the biplanar shear loop mechanism is appli-
cable to the case where perfect dislocations decompose into
partials. This is also clearly seen in the simulation of Fig. 8.
The formation of sessile dislocations was successfully ob-
served (molecular dynamics and quasi-continuum compu-
tational approaches) by Marian et al. [14,15] and is
confirmed here, although there are differences in the details
of the reaction.
5. Void growth kinetics

The Cocks–Ashby [44,45] model for void growth is,
strictu sensu, only applicable to creep; the mechanisms of
matter transfer are not dislocations but flow of vacancies
along boundaries, surfaces or dislocations (the latter is
the power-law creep, vacancies promoting the climb of dis-
location segments). However, its form is such that it can be
used for an ideally plastic material with strain rate sensitiv-
ity. The constitutive equation for power-law creep is

_ess ¼ _e0
re

r0

� �n

ð31Þ

where _ess is the equivalent strain rate, re is the equivalent
stress, and _e0; r0 and n are parameters. n is called the
‘‘power-law creep” exponent and is the inverse of the strain
rate sensitivity. Cocks and Ashby [44,45] applied continuity
rowth in metals: Atomistic calculations, Acta Mater (2008),
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conditions to it in the presence of void and obtained the
following equation for the evolution of damage, D

dD
dt
¼ b_e0

1

ð1� DÞn � ð1� DÞ
� �

re

r0

� �n

ð32Þ

This constitutive equation was implemented by Bammann
et al. [46] into finite element method codes to predict the
failure of metals. The evolution of damage predicted by
Cocks and Ashby [44,45] is dependent on the parameter
n. In creep, it has a value between 1 and 10 (with n ¼ 5
being the most quoted value), but in defining the strain rate
sensitivity of plastic flow, the value of ð1=nÞ is much lower,
on the order of 0.01, corresponding to n ¼ 100. Integration
of Eq. (32) yields the closed form solution

ln jð1� DÞnþ1 � 1j � ln jð1� D0Þnþ1 � 1j ¼ ðnþ 1Þ_ebt

ð33Þ
The damage evolution in the MD calculations was esti-
mated by considering the radius increase as a function of
time. The initial damage D0 was evaluated for a void radius
r ¼ 2 nm that gave an initial damage level D0 ¼ 0:004.
Fig. 15a shows the evolution of damage for three crystal-
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line orientations: [001], [11 0] and [111]. The computation
was carried out for a longer time for [001]; nevertheless,
the results from the three orientations are compatible.
The predictions of the Cocks–Ashby model are shown in
the same plot and good agreement is obtained, the shape
of the curves being similar. A significant difference is that
there is an incubation time of 400 ps for the MD computa-
tions. This is the result of the time required to nucleate a
dislocation (shear) loop. The match with Cocks–Ashby is
best for a value of n ¼ 30. This corresponds to a strain rate
sensitivity of 0.033. This value is somewhat higher than the
strain rate sensitivity often used for Ni at lower strain rates:
0.01. The higher strain rate sensitivity can be justified by
the exceedingly high strain rate used in the present MD
simulations: 108 s�1. The Cocks–Ashby prediction can be
easily extended to larger damages and this is shown in
Fig. 15b for the values of n used in Fig. 15a. There is a
gradual increase in the rate until D ¼ 0:2. Beyond this va-
lue, damage proceeds essentially instantly.
6. Density of geometrically necessary dislocations

It is possible to estimate the total dislocation length
around the expanding void using Ashby’s [20–22] concept
of geometrically necessary dislocations. This can be done
in an approximate manner, by assuming that the disloca-
tion loops transport matter outside.

The length of circumnavigating loop (each composed of
six initial loops whose ends react) at an angle of 45� with
the surface is:

ML ¼ 2
2prffiffiffi

2
p

� �
k þ 6ðkr � rÞ ð34Þ

where k is the extension ratio of the loop from its original
value ðk ¼ R=rÞ. The distance that the dislocations travel
outwards determines the radius R of the work-hardened
layer (Fig. 16). The two terms represent the circular loop
and six radii resulting from the reactions of loops extrem-
ities. The formation of two loops expands the void by a
volume MV (Fig. 16)

MV ’ 2
ffiffiffi
2
p

pr2b ð35Þ
The corresponding average increase in void radius, Mr,
ignoring the distortion and other effects, is

Mr ¼ ðMV Þ
1
3 ¼ 2

ffiffiffi
2
p

pr2b
	 
1

3 ð36Þ

The ratio of Eqs. (34) and (36) gives

dL
dr
¼

4pkffiffi
2
p þ 6ðk � 1Þ
h i

r

2
ffiffiffi
2
p

pr2b
� �1

3

ð37Þ

Integrating

L ¼
4pkffiffi

2
p þ 6ðk � 1Þ
h i

2
ffiffiffi
2
p

pb
� �1

3

Z rf

r0

r
1
3dr ð38Þ
rowth in metals: Atomistic calculations, Acta Mater (2008),



Fig. 16. Volume increment generated in void by the expansion of two
shear loop rings.
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If we make r0 ¼ 0

L ¼
3 4pkffiffi

2
p þ 6ðk � 1Þ
h i

4 2
ffiffiffi
2
p

pb
� �1

3

r
4
3 ð39Þ

The work-hardened volume is equal to

V wh ¼
4

3
pR3 � 4

3
pr3 ¼ 4

3
pðk3 � 1Þr3 ð40Þ

The dislocation density is defined as

q ¼ L
V wh

¼
9 4pkffiffi

2
p þ 6ðk � 1Þ
h i

16 2
ffiffiffi
2
p

pb
� �1

3pðk3 � 1Þ
r�

5
3 ¼ F ðkÞr�5

3 ð41Þ

The densities are plotted for values of k varying from 4 to
20 in Fig. 17. These values are consistent with dislocation
densities in highly work-hardened metals. It is evident that
k has to be larger for smaller voids, consistent with the
mean free path of dislocations. As the void expands, the
dislocation density can be accommodated with relatively
a smaller work-hardened region. The prediction from Eq.
41 applies only to the geometrically necessary dislocations
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Fig. 17. Calculated density of geometrically necessary dislocations as a
function of the ratio k ¼ R
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and does not incorporate dislocation interaction effects
that contribute to the statistically stored dislocation
density.

7. Conclusions

1. Atomistic calculations combined with dislocation analy-
sis reveal the detailed mechanism of void expansion in
metals at strain rates in which diffusion does not play
a role.

2. The nucleation is favored at slip planes that make an
angle of 45� with the void surface, thus maximizing
the shear stresses. This plane is translated outwards as
the void grows, enabling the successive nucleation of
loops.

3. Voids grow by the sequential nucleation, growth and
expansion of loops from the void surface. The shear
loop postulated by Lubarda et al. [8] is analyzed in
greater detail for a two-dimensional configuration.

4. The expansion of shear loops on the six h110i directions
is analyzed and the dislocation (both perfect and partial)
reactions are calculated.

5. The atomistic calculations, carried out using the LAM-
MPS code using the embedded atom method with a
Mishin [30] potential, show the partial dislocations
and stacking faults after appropriate filtering. The shear
loops emanating from the void surface can be observed,
and a new mechanism of dislocation interaction was
revealed: shear loops in intersecting {111} planes react
and there is no trailing stationary dislocation. In this
biplanar loop mechanism, the expansion of the disloca-
tion is easier than in the monoplanar mechanism of
Lubarda et al. [8].

6. The effect of void size on the stress required for disloca-
tion emission (onset of growth) is calculated by both
MD and analytical means. This stress drops significantly
in the void radius range investigated (0.5–4 nm). In con-
trast, the Gurson [2] prediction for the flow stress of a
material containing voids is independent of the radius
and is more consistent with larger voids.

7. The relationship between the stress required for void
expansion and void size resembles closely the equation
for the stress to bow a dislocation into a semi-circle,
by equating the void and dislocation radii. This is con-
sistent with MD results showing void expansion by
shear loop formation.

8. The dislocation density around an expanding void is cal-
culated based on Ashby’s [20–22] concept of geometri-
cally necessary dislocations. The densities obtained are
consistent with those of highly work-hardened metals
ð1011 � 1013 cm�2Þ.

9. The fundamental reason for the stress dependence of
void growth stress expressed in Fig. 3 might also be con-
nected to the discovery made by Horstemeyer et al. [25].
As mentioned in Section 1, they found a similar scale
dependent yield behavior in specimens subjected to sim-
ple shear. Although this phenomenon has been earlier
rowth in metals: Atomistic calculations, Acta Mater (2008),
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attributed to strain gradient effects, Horstemeyer et al.
[25] concluded that the reason for the scale dependence
is altogether different. It is a matter of dislocation source
availability, which becomes more and more restricted as
the scale is decreased. As the void size is decreased
beyond a certain threshold, the availability of maximum
Schmid factor planes making 45� with the void surface
and directions decreases. Thus, the stress required to
generate the dislocation loop increases.
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